IMPACT ANALYSIS OF MEMS-COMPONENTS ERRORS OF SINS ON ACCURACY OF SATELLITE LAUNCH VIA ULTRALIGHT LAUNCH VEHICLE

  • A. S. Smyrnov Oles Honchar Dnipro National University
  • O. V. Holubek Oles Honchar Dnipro National University
Keywords: ULTRALIGHT CLASS LAUNCH VEHICLE; A PRIORI ACCURACY ASSESSMENT; FACTOR ANALYSIS; ORBITAL PARAMETERS DEVIATION

Abstract

The article is devoted to the development of work on the study of the influence of the error of measuring instruments of a strapdown inertial navigation system built using micro-electromechanical components on the accuracy of injection a spacecraft by an ultralight launch vehicle into low near-Earth orbits up to 400 km altitude and inclination order 37,4. For two modes of operation of a strapdown inertial navigation system (inertial and inertial-satellite), using the method of factorial analysis, a study was made of the accuracy of the injection of the spacecraft, as a result of which the following results were obtained. The determining disturbing factors are revealed, the dependencies of the trajectory tubes and the limit deviations of the kinematic parameters of the spacecraft at the point of separation from the launch vehicle on the altitude of the target orbit are determined. It is revealed that the determining disturbing factors are the run-to-run bias of the gyroscope and the random drift of the gyroscope. It is shown that the trajectory tubes increase in size with the flight time and with an increase of the altitude of the orbit. The maximum deviations of the current position and absolute speed in the inertial mode were 218 km and 543 m/s, respectively. In the inertial satellite mode, these values do not exceed 132 m and 1.4 m/s, respectively. It is determined that the maximum deviations of the osculating parameters of the spacecraft orbit are: in altitude is 54 km, in inclination is 1.7, in eccentricity is 1.210-4, in right ascension ascending node is 6.9. For the inertial-satellite mode: in height is 722 m, in inclination is 0.003, in eccentricity is 2.310-4, in right ascension ascending node is 0.03. It is shown that the use of data from a satellite navigation system significantly reduces the trajectory tube and increases the accuracy of the osculating parameters of the spacecraft orbit. A comparative analysis of the spacecraft injection accuracy was carried out for two values of the inclination of the target orbit of the spacecraft 37,4 and 51,5.

Author Biographies

A. S. Smyrnov, Oles Honchar Dnipro National University

Смирнов Артем Сергійович, Україна. Дніпровський національний університет імені Олеся Гончара. Аспірант кафедри систем автоматизованого управління. Сфера інтересів – навігація ракет-носіїв та космічних апаратів.

O. V. Holubek, Oles Honchar Dnipro National University

Голубек Олексаендр Вячеславович, Україна.
Дніпровський національний університет імені Олеся Гончара.
Доцент кафедри систем автоматизованого управління, доктор технічних наук, доцент. Сфера інтересів – динаміка, балістика та керування рухом ракетно-космічних літальних апаратів.

References

Клюшников В.Ю. Ракеты-носители сверхлегкого класса: ниша на рынке пусковых услуг и перспективные. URL: https://www.vesvks.ru/vks/article/rakety- nositeli-sverhlegkogo-klassa-nisha-na-rynke- 16453 (дата доступу 29.10.2022).

Adamowski J. UK-Ukrainian launch vehicle developer Skyrora to establish smallsat launch site. URL: https://spacenews.com/uk- ukrainian-launch-vehicle-developer-skyrora- to-establish-smallsat-launch-site/ (access date 29.10.2022).

Голубек А.В. Априорная оценка точности выведения космических аппаратов современными ракетами- носителями с БИНС: монография; под ред. акад. НАНУ А.В. Дегтярёва. Днепр: Ліра, 2020. 187 с.

Проектирование систем управления объектов ракетно-космической техники. Т. 1. Проектирование систем управления ракет-носителей: учеб. пособие; под общ. ред. Ю.С. Алексеева [и др.]. Харьков: НАУ «ХАИ», НПП «Хартрон-Аркос», 2012. 578 с.

Novykov O. Methods of analysis for launch vehicle injection accuracy: monograph. Vilnius: VGTU Press Technika, 2015. 256 p.

Голубек А.В. Сравнение методов оценки влияния погрешностей комплекса командных приборов на точность выведения ракет-носителей с терминальным наведением. Авиационно- космическая техника и технология. 2015. 2. С. 45-51.

Чуча Ю.В. Оценка функционирования БИНС, построенных по MEMS технологии, без и с использованием интеграции с АП СНС. Космические технологии: настоящее и будущее: тез. докл. 8-й Междунар. конф., 21-24 мая 2019 г. Днипро, 2019. С. 45.

Trefilov P.M., Mamchenko M.V., Korol’kov A.V . Strapdown inertial navigation systems readings correction based on navigational data of other sensors and systems with intelligent selection of the priority adjuster. Materials of web-conference Topical Problems of Agriculture, Civil and Environmental Engineering, 23 December 2020. URL: https://www.e3s- conferences.org/articles/e3sconf/abs/2020/84/ e3sconf_TPACEE2020_02024/e3sconf_TPA CEE2020_02024.html. DOI: 10.1051/e3sconf/202022402024. (дата доступу 29.10.2022)

Liu J., Zhao T. In-flight alignment method of navigation system based on microelectromechanical systems sensor measurement. International journal of distributed sensor networks. 2019. Vol. 15, Is. 4. DOI: 10.1177/1550147719844929.

Jamshaid A.J. Realization of an autonomous integrated suite of strapdown astro-inertial navigation systems using unscented particle filtering. Computers and mathematics with applications. 2009. Vol. 57. P. 169-183.

DOI: 10.1016/j.camwa.2008.07.042.

Liu J. Inner attitude integration algorithm based on fault detection for strapdown inertial attitude and heading reference system. Chinese journal of aeronautics. 2010. Vol. 23. P. 68-74. DOI:

1016/S1000-9361(09)60189-8.

Stoica A.-M., Ene C., Jakab I.-B. A

discrete-time Kalman filtering method for

launch vehicle under parametric modelling uncertainty. Materials of the 9th EASN international conference on “Innovation in aviation & space”, University Politehnica, 17 December 2019. Bucharest, 2019. 8 p. DOI: 10.1051/matecconf/201930407008.

Biswas S. Computationally efficient non-linear Kalman filters for on-board space vehicle navigation: dissertation thesis. 2017. School of electrical engineering and telecommunications, Faculty of engineering. Sydney, 2007. 185 p.

Арсеньев В.Н. Оценивание характеристик точности системы управления ракеты-носителя по результатам пусков в различных условиях. Известия ВУЗов. Приборостроение. 2015. 58(1). С. 27-32.

Смирнов А.С., Голубек А.В. Оценка влияния погрешностей БИНС, построенной на MEMS-компонентах, на точность выведения ракеты-носителя сверхлёгкого класса. Авіаційно-космічна техніка і технологія. 2021. 5. С. 60-69. DOI: 10.32620/aktt.2021.5.08.

Zhang L.-J. Error analysis of strapdown inertia navigation system in tactical missiles. Advanced in control engineering and information science. 2011. Vol. 15. P. 1456- 1460. DOI: 10.1016/j.proeng.2011.08.270.

Zosimovych N. Modeling the integrated guidance system of a commercial launch vehicle international refereed. Journal of engineering and science (IRJES). 2014. Vol. 3, Iss. 6. P. 39-54.

Golubek A.V. A priori analysis of the injection accuracy of a launch vehicle into equatorial orbit. Міжвідомчий науково- технічний збірник «Адаптивні системи автоматичного управління». 2020. 2(37). P . 74-86.

Pavlis N.K., Holmes S.A., Kenyon S.C., Factor J.K. The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). Journal of geophysical research. 2012. Vol. 117. P. 1-38. DOI:10.1029/2011JB008916.

ГОСТ 4401-81. Атмосфера стандартная. Параметры. Взамен ГОСТ 4401-73; введ. 01.07.1982. М.: Изд-во стандартов, 1982. 180 с.NIMA TR 8350.2: Department of Defense World Geodetic System 1984. URL: https://gis-lab.info/docs/nima-tr8350.2- wgs84fin.pdf (access date 29.10.2022).

Sensonor STIM300 Inertial Measurement Unit datasheet. URL: https://www.sensonor.com/products/inertial- measurement-units/stim300 (access date 29.10.2022).

Published
2023-02-23
How to Cite
Smyrnov, A., & Holubek, O. V. (2023). IMPACT ANALYSIS OF MEMS-COMPONENTS ERRORS OF SINS ON ACCURACY OF SATELLITE LAUNCH VIA ULTRALIGHT LAUNCH VEHICLE. Journal of Rocket-Space Technology, 30(4), 57-65. https://doi.org/10.15421/452209
Section
Control systems, telecommunications, navigation and automation