PLANNING MANEUVERS FOR STABILIZATION THE FLIGHT ALTITUDE OF A RADAR SATELLITE USING AN ELECTRIC PROPULSION SYSTEM
Abstract
The article is devoted to the development of a method for planning the activation of an electric propulsion system to provide the stabilization of the flight altitude of a radar satellite in the ascending node of the orbit, taking into account the limitations of the power supply system. A method for stabilization the satellite trajectory to the nominal flight altitude has been developed. It is based on the solution of the variational problem of finding the optimal combination of an electric propulsion system burning time, the orientation of the thrust vector, and the orbital argument of the latitude of the ignition point. A mathematical model of the satellite's motion, as a point of variable mass, under the influence of the thrust forces of an electric propulsion system, the Earth's gravity and the aerodynamic drag of the Earth's atmosphere has been developed. The control program and its functionalities for the electric propulsion system have been determined. It is shown that taking into account the limitation on the burning time of the electric propulsion system leads to the need of distribution of the flight altitude stabilization maneuver into several ignitions, between which there are sections of the satellite battery charge. It is proposed for all activations of the flight altitude stabilization maneuver, except for the last one, to represent the search for parameters of the control program as a problem of maximum compensation for orbital deviation with minimal consumption of the working substance and a limitation on the electric propulsion system burning time. For the last activation - to represent it as problem of providing a given level of deviation of the orbit altitude while minimizing the consumption of the working substance. Computer simulation was carried out, which confirmed the efficiency of the proposed method. The dependences of the flow working substance mass consumption and the average number of maneuvers required to stabilize the altitude of the orbit of a satellite with a 210-5 thrust-to-weight ratio and average ballistic coefficient of 0.01 m2/kg on the altitude of the sun-synchronous orbit are determined.
References
Yamamoto T., Arikawa Y., Ueda Y., Itoh H. Autonomous Precision Orbit Control Considering Observation Planning: ALOS-2 Flight Results. Journal of guidance, control, and dynamics, 2016. Vol. 39. No. 6. P. 1244-1264. DOI: 10.2514/1.G001375.
Эльясберг П.Е. Введение в теорию полёта искусственных спутников Земли. Москва: Либроком, 2014. 544 c.
Rosengren M. Orbit Control of ERS-1, ERS-2 and ENVISAT to Support SAR Interferometry. ERS and Envisat Symposium, ESA, 2000. Р. 16-20.
Iwata T., Shimada M. Precision Orbit Control of the Advanced Land Observing Satellite (ALOS) for SAR Interferometry. Transactions of the Japan Society for Aeronautical and Space Sciences. Space Technology Japan, 2009. Vol. 7. No. 26. P . Td_19-Td_28.
Kahle R., D’Amico S. The TerraSAR-X Precise Orbit Control – Concept and Flight Results. Proceedings of the 24th International Symposium on Space Flight Dynamics, ISSFD 2014.
Bolandi H, Abrehdari S. Precise Autonomous Orbit Maintenance of a Low Earth Orbit Satellite. Journal of Aerospace Engineering, 2018. V ol. 31. Iss. 4. DOI: 10.1061/(ASCE)AS.1943-5525.0000823.
Лицзе В., Баранов А.А. Оптимальное удержание космического аппарата с двигателями малой тяги на солнечно- синхронной орбите. Вестник МГТУ им. Н.Э. Баумана. Серия “Машиностроение”, 2015. 2. С. 68-83.
Cao J., Li H., Shen H. Orbital plane change maneuver strategy using electric propulsion. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2018. Vol. 233. Iss. 7. P. 2360-2367. DOI: 10.1177/0954410018779315.
Leomanni M., Garulli A., Giannitrapani A., Scortecci F. An adaptive groundtrack maintenance scheme for spacecraft with electric propulsion. Acta Astronautica, 2020. Vol. 167. P. 460-466. DOI: 10.1016/j.actaastro.2019.11.035.
Иванова В.И., Шептун А.Д. Минимизация ухода местного солнечного времени восходящего узла солнечносинхронной орбиты с учетом точности выведения. Авиационно- космическая техника и технология, 2015. 2(119). С. 52-56.
Иванова В.И., Шептун А.Д. Обеспечение максимальной стабильности условий дистанционного зондирования Земли без коррекции орбиты. Космична наука i технология, 2016. 22(2). С. 38-47. DOI: 10.15407/knit2016.02.038.
Виноградов Д.Ю., Давыдов Е.А. Методика формирования устойчивых околокруговых солнечно-синхронных орбит при длительных сроках
существования космического аппарата. Инженерный журнал: наука и инновации, 2017. 6. С. 1-23. DOI: 10.18698/2308-6033- 2017-6-1630.
Артюшенко В.М., Виноградов Д.Ю. Анализ влияния эволюции параметров солнечно-синхронных орбит на условия использования космических аппаратов дистанционного зондирования Земли. Авиационная и ракетно-комическая техника, 2018. 2(16). С. 3-13.
Maslova A.I., Pirozhenko A.V., Vasyliev V.V. Minimum altitude variation orbits. Analysis of characteristics and stability. Технічна механіка, 2021. 4. С. 44-55. DOI: 10.15407/itm2021.04.044.
Sidorov A., Pererva V. Determining the regions for efficient use of electro-jet low-thrust engines. Eastern-European Journal of Enterprise Technologies, No. 5(99). P . 43-50. DOI: 4061.2019.168446.
Vallado D.A., McClain W.D. Fundamentals of Astrodynamics and Applications, 4th ed. Microcosm Press, 2013. 1106 p.
IERS Conventions (2010) / eds. Petit G., Luzum B. Frankfurt am Main, 2010. 179 p.
Голубек А.В., Дронь Н.М., Ляшенко А.Н. Энергетические затраты на комбинированный увод крупногабаритного космического мусора c учётом динамически изменяющейся атмосферы Земли. Механіка гіроскопічних систем, 2017. 33. С. 15-27. DOI: 10.18698/0536-1044-2018-2-86-98.