• S. Alekseyenko Oles Honchar Dnipro National University


In certain flight conditions, supercooled water droplets contained in clouds can freeze, falling on the aerodynamic surfaces of the aircraft. The resulting ice build-up can have a significant effect on the aerodynamics of the aircraft, changing the shape of the surface itself and its roughness. However, the question of determining the degree of this negative effect of icing on the aircraft, which has a certain layout, configuration and dimensions under given meteorological and flight conditions, is rather complicated and still far from complete. The paper proposes and illustrates a methodology for determining the degree of the negative impact of icing on the aircraft, which is following the regulatory documentation and the existing system for determining icing conditions, and allows taking into account both the configuration and dimensions of the aircraft, as well as meteorological and flight conditions. The technique is based on the developed software and methodological support, which allows to numerically simulate the processes of icing of aerodynamic surfaces of the aircraft. When describing the air-droplet flow and moisture deposition on a streamlined surface, the model of interpenetrating media was used, and when describing the process of ice growth, a technique based on the equations of continuity and conservation of energy was used. Concerning the example of the NACA 0012 airfoil, systematic studies of the effect of icing on an aircraft were carried out in a wide range of flight and meteorological parameters; the calculation results in the form of four-parameter nomograms are presented. The given systematization of the results will make it possible to quickly analyze the icing hazard along the planned flight route in known meteorological conditions, as well as during the flight using current meteorological data, to develop recommendations for changing the flight plan. The technique can be supplemented with a detailed account of the effect of icing on the aerodynamic characteristics, stability and controllability of the aircraft.

Author Biography

S. Alekseyenko, Oles Honchar Dnipro National University

Україна. Дніпровський національний університет імені Олеся Гончара.

Завідувач кафедри механотроніки. Доктор технічних наук.

Сфера наукових інтересів – чисельне моделювання процесів гідроаеродинаміки та тепломасопереносу.


Jeck R. K. A History and Interpretation of Aircraft Icing Intensity Definitions and FAA Rules for Operating in Icing Conditions. Technical report, DOT/FAA/AR-01/91. November, 2001. 43 p.

Aeronautical Information Manual (AIM), updated annually; Federal Aviation Administration, Washington, DC 20590.

Federal Aviation Regulations, in “Code of Federal Regulations, Title 14, Aeronautics and Space” updated periodically; Federal Aviation Administration, Washington, DC 20590.

Lewis W. Meteorological Aspects of Aircraft Icing. Compendium of Meteorology, 1951. P. 1197–1203, American Meteorological Society, Boston, Massachusetts.

Thompson J.K. All-Weather Flight Concern of the Pilot and Weather Forecaster. Aeronautical Engineering Review, July, 1956. 66 p.

Mitchell L.V. Aircraft Icing-A New Look. Aerospace Safety. Dec., 1964. P. 9–11, Published by the U.S. Air Force.

Werner J. B. Ice Protection Investigation for Advanced Rotary-Wing Aircraft. USAAMRDL Technical Report 73-38. August, 1973. P. 113–124, Published by U.S. Army Air Mobility Research and Development Laboratory, Fort Eustis, Virginia.

FAA Inflight Aircraft Icing Plan. April, 1997. Federal Aviation Administration, 800 Independence Ave., S.W., Washington, DC 20590.

Alekseyenko S.V. Numerical Simulation of the Icing Surfaces of the Cylinder and Profile. PAMM 2013. 2013. – Vol. 13. Issue 1. – P.299-300.

Приходько А.А., Алексеенко С.В. Обледенение аэродинамических поверхностей: моделирование воздушно-капельного потока. Авиационно-космическая техника и технология. НАУ ХАИ, 2013. №4. С. 59-67.

Prykhodko A.A., Alekseyenko S.V., Prikhodko V.V. Numerical investigation of the influence of horn ice formation on airfoils aerodynamic performances. International Journal of Fluid Mechanics Research, Volume 46, 2019 Issue 6, Р.499-508, DOI: 10.1615/InterJFluid MechRes.2019026024

Spalart P.R. A one-equation turbulence model for aerodynamic flow // AIAA Paper. 1992. Nо. 92 – 0439. 22 p.

Aupoix B. Extensions of the Spalart-Allmaras Turbulence Model to Account for Wall Roughness // International Journal of Heat and Fluid Flow. 2003. Vol. 24. P. 454–462.

Roe P. L. Characteristic-Based Schemes for the Euler Equations // Annual review of fluid mechanics. 1986. Vol. 18. P. 337–365.

Приходько А.А., Алексеенко С.В. Математическое моделирование процессов тепломассообмена при обледенении аэродинамических профилей Тепломассообмен-2008. ММФ-VI. Т.1. Конвективный тепломассообмен. Минск: АНК «ИТМО им А.В. Лыкова» НАНБ, 2008. С.1-10.

Alekseyenko S., Yushkevich O. The development of a three-dimensional model of the ice growth process on aerodynamic surfaces // Technology Audit And Production Reserves, 2019, Volume 4, No 1(48), pp. 11-18. doi:

Алексеенко С.В., Недвига Д.В. Исследование режимов обледенения летательных аппаратов. Механіка гіроскопічних систем. Випуск 33. 2017. – С.72-83.

Advisory Circular of Federal Aviation Administration 20-73А. Aircraft ice protection, August 16, 2006. 233 р.

How to Cite
Alekseyenko, S. (2021). DETERMINING THE INFLUENCE OF ICING ON THE AIRCRAFT. Journal of Rocket-Space Technology, 29(4), 166-178.
Applied mechanics and mathematical methods