GENERAL CASE OF LIQUID MOTION IN A POROUS RADIAL CENTRIFUGAL PUMP

  • Mikhaylo Oleksandrovich Katrenko Oles Honchar Dnipro National University
  • Arkadiy Andreevich Panchenko Oles Honchar Dnipro National University
  • Vladimir Ivanovich Eliseyev Institute of Geotechnical Mechanics named by N. Poljakov of National Academy of Sciences of Ukraine
Keywords: POROUS BODY, CENTRIFUGAL PUMP, MOTION, LIQUID, POROUSITY, ANISOTROPICITY, SPEED, PRESSURE, HEAD, FORCE

Abstract

Prospects and increasing use of porous structures in the design of fuel supply units for aircraft engines determines the importance, relevance and necessity of theoretical research aimed at creating a mathematical model of the motion of viscous, incompressible fluid in rotating porous bodies. A system of equations of motion describing the movement of a fluid in a porous wheel in a polar coordinate system is considered. Due to the great difficulties of analytical determination of the mass force of resistance in the model, it is assumed that it consists of the force of frictional resistance and the force of pressure resistance. A system of equations describing the motion of a fluid in a porous wheel is written in the polar coordinate system under the assumption that the change in the parameters of the fluid along the angle of rotation does not occur. In the laminar mode of motion, the filtration characteristics are expressed in the form of symmetric tensors of the second rank. The mass force of frictional resistance in the case of a turbulent mode of motion takes into account the accepted law of resistance. The action of the pressure gradient from the centrifugal forces during the motion of the fluid in the rotating porous wheel and the anisotropic properties of the porous element are taken as obtained during the motion of the fluid in a stationary sample. Therefore, from previous experimental studies, only the mass force of frictional resistance is taken into account, and the force of pressure resistance is taken into account in the equations. The equation connecting the static pressure of the fluid with the angular velocity of rotation and the geometrical parameters of the porous impeller and the gap is obtained.

Author Biographies

Mikhaylo Oleksandrovich Katrenko, Oles Honchar Dnipro National University

Ukraine. Oles Honchar Dnipro National University.

Professor of the engines building department.

Doctor of engineering science in Engines and Power Plants.

Area of interest – engines.

Arkadiy Andreevich Panchenko, Oles Honchar Dnipro National University

Ukraine. Oles Honchar Dnipro National University.

Leading Researcher of the engines building department.

Cand. Sci. in Tech., in Engines and Power Plants.

Area of interest – engines.

Vladimir Ivanovich Eliseyev, Institute of Geotechnical Mechanics named by N. Poljakov of National Academy of Sciences of Ukraine

Ukraine. Institute of Geotechnical Mechanics named by N. Poljakov of National Academy of Sciences of Ukraine.

Senior researcher, Cand. Sci. in Phys.-Math.,

Area of interest – mechanics of the liquid and gas.

References

Панченко А. А., Катренко М. А. Результаты экспериментальных исследований вибрационных характеристик узлов систем подачи компонентов жидкостных ракетных двигателей. Проблемы высокотемпературной техники. Дніпропетровськ : Пороги, 2012. С. 92–102.

Панченко А. А., Катренко М. А. Экспериментальные исследования энергетических характеристик пористых колец. Проблемы высокотемпературной техники. Дніпропетровськ: Вид-во ДДУ, 1999. С. 79 – 86.

Катренко М. А., Панченко А. А. Исследование границ устойчивой подачи топлива в камеру с противодавленим. Вестник двигателестроения. Запорожье : АО «Мотор Сич», 2018. № 1. С. 22–27.

Панченко А. А., Катренко М. А., Кудреватых А. Т. Исследование динамических радиальных уплотнений двигателей летательных аппаратов. Системи озброєння і військова техніка. Харків: Харківський університет Повітряних Сил імені Івана Кожедуба, 2016. № 2(46). С. 134–137.

А. А. Панченко Движение жидкости в пористом колесе центробежного насоса. Математическое моделирование в инженерных расчетах сложных систем. Дніпропетровськ: ДДУ, 1997. С. 71-75.

Аравин В. И. Теория движения жидкостей и газов в недеформируемой пористой среде. Москва: Гостехиздат, 1953. 616 с.

Sylvain Pasquier, Michel Quintard, Yohan Davit. Modeling flow in porous media with rough surfaces: Effective slip boundary conditions and application to structured packings. Chemical Engineering Science 2017, 165, Р. 131-146.

https://doi.org/10.1016/j.ces.2017.01.063

Bo Zhou, Peixue Jiang, Ruina Xu, Xiaolong Ouyang. General slip regime permeability model for gas flow through porous media. Physics of Fluids 2016, 28 (7), 072003. https://doi.org/10.1063/1.4954503.

Коллинз Р. Течения жидкостей через пористые материалы. [пер. с англ.] / под ред. Г. И. Баренблатта. Москва: Мир, 1964. 352 с.

Панченко А. А. Ламинарное течение жидкости во вращающемся пористом колесе. Днепропетровский государственный университет. Днепропетровск: 1985. (Деп. ВИНИТИ 29.12.85, № 8976-В85).

Великанов М. А. Движение подземных вод в крупнозернистых грунтах. Известия АН СССР, ОТН, № 7 – 8, 1945, С. 638–647.

Лойцянский Л. Г. Механика жидкости и газа: Учеб. для вузов. Изд. 7-е испр. Москва : Дрофа, 2003. 840 с., 311 ил., 22 табл. ISBN 5-7107-6327-6.

Published
2021-11-17
How to Cite
Katrenko, M. O., Panchenko, A. A., & Eliseyev, V. I. (2021). GENERAL CASE OF LIQUID MOTION IN A POROUS RADIAL CENTRIFUGAL PUMP. Journal of Rocket-Space Technology, 29(4), 81-87. https://doi.org/10.15421/452108
Section
Engines and power plants