PHENOMENON OF THE LOCAL CLOSE-RANGE PEAK OF MINIMUM REQUIRED LAUNCH MASS IN TACTICAL AND SURFACE-TO-AIR MISSILES DESIGN
Abstract
The aim of this article is to highlight the phenomenon of the local close-range peak of the minimum required launch mass of tactical and surface to air guided missiles. This phenomenon was identified by the author during the study of the areas of optimal design solutions (design parameters) for these classes of missiles. This phenomenon occurs during the design of missiles of these classes of minimum mass in the presence of constrains on the minimum allowable terminal velocity at zero or extremely low altitudes. The essence of this phenomenon is that the dependence of the minimum launch mass on the range at given constraints is not monotonic and contains a local maximum at some close range and a local minimum at some "middle" range. The research was carried out by two-criterion optimization of design parameters of the specified classes of missiles with simultaneous optimization of flight trajectories using genetic algorithm. In the considered basic calculation case, the minimum required (peak) launch mass when shooting at a range of 25 km is similar to the minimum required mass when shooting at a range of 80 km. Failure to take into account this feature of the dependence of the minimum required launch mass on the flight range can lead to the fact that the distances in the location of the peak will be unattainable for the missile with the minimum required terminal velocity. To analyze the causes of this phenomenon, the calculated case of a tactical missile flying at different distances on optimal trajectories with maximum terminal velocity was additionally considered. The obtained results allowed to determine the causes of the phenomenon of local close-range peak of the minimum required launch mass. This phenomenon must be taken into account when designing missiles of the considered classes to ensure the reach of the entire span of range with the specified constrains.
References
Архангельский И.И., Афанасьев П.П., Болотов Е.Г. и др. Проектирование зенитных управляемых ракет / ред. Голубев И.С., Светлов В.Г. Изд. второе, перераб. и доп. Москва: Изд-во МАИ, 2001. 732 с.
Павлюк Ю.C. Баллистическое проектирование ракет: Учебное пособие для вузов. Челябинск: Изд. ЧГТУ, 1996. 92 с.
Николаев Ю.М., Панин С.Д., Соломонов Ю.С., Сычев М.П. Основы проектирования твердотопливных управляемых баллистических ракет. Часть I: Учебное пособие Москва: Изд-во МГТУ им. Н.Э. Баумана, 1998. 104 с.
Николаев Ю.М., Соломонов Ю.С. Инженерное проектирование управляемых баллистических ракет с РДТТ. Москва: Воениздат, 1979. 240 с.
Даркин И.И. Основы проектирования беспилотных летательных аппаратов с учетом экономической эффективности. Москва: Машиностроение, 1973. 224 с.
Fleeman E. L. Tactical Missile Design. Reston: AIAA Inc., 2006. 468 p.
Boord W. J., Hoffman J. B. Air and Missile Defense Systems Engineering. Boca Raton: CRC Press, 2016. 245 p.
Riddle D. B., Hartfield R. J., Burkhalter J. E., Jenkins R. M. Genetic-Algorithm Optimization of Liquid-Propellant Missile Systems. Reston: AIAA Inc., AIAA Journal of Spacecraft and Rockets. 2009, Vol. 46, No. 1. p. 151 – 159
Chubarov А. Constructing the models of programmed flight for path calculation in designing tactical and anti-aircraft guided missiles. Kharkiv: PC Technology center. Easter-European Journal of Enterprise Technologies / Mathematics and cybernetics – applied aspects. 2021, 1/4 (109). p. 21 – 30
ISO 2533:1975. Standard Atmosphere. 1975. 108 p.
Vinh N.X., Busemann A., Clop R.D. Hypersonic end planetary entry flight mechanics. Ann Arbor: University of Michigan Press, 1980. 357 p.
Phillips C. L., Parr J. M. Feedback Control Systems. 5th ed. Upper Saddle River: Prentice Hall, Inc., 2011. 784 p.