• R. Mochonov Yuzhnoye State Design Office
  • А. Sotnichenko Yuzhnoye State Design Office
  • H. Ivanytskyi Yuzhnoye State Design Office
  • М. Salo Yuzhnoye State Design Office
  • O. Brizhak Yuzhnoye State Design Office


To prevent surfaces flowing under direct impact of high-temperature gas jets, the majority of up-to-date launch complexes of integrated launch vehicles (ILV) apply water feed systems. Nowadays the only feasible way of theoretical research of interaction of propulsion systems supersonic jets with water jets from water feed system headers is numerical simulation. To investigate thermal and force load on surfaces under impact of supersonic jets from propulsion system we carried out numerical simulation of gas-dynamic process in gas duct during integrated launch vehicle takeoff. We investigated the two options, with and without water feed. We took the Antares ILV gas duct as a prototype. Our mathematical model is based on the two-phase medium dynamics equations. At this, the gas flow is described by the three-dimensional Navier-Stokes equations, and at simulation of water drops we applied Lagrange trajectory approach. The research was done in commercial code ANSYS Fluent. As a result of the numerical experiment we got data on efficiency of reduction of thermal and force impact of propulsion system supersonic jets on gas duct structure at use of water feed system. Based on the research we worked out the key recommendations that might be of use at design and optimization of water feed systems of ILV ground complexes.

Author Biographies

R. Mochonov, Yuzhnoye State Design Office

Украина ГП «КБ «Южное» им. М.К. Янгеля», инженер-конструктор 1-й категории.

Сфера интересов - вычислительная гидродинамика и теплообмен при разработке космической техники.

А. Sotnichenko, Yuzhnoye State Design Office

Украина. ГП «КБ «Южное» им. М.К. Янгеля», начальник группы.

Сфера интересов - архитектура и размещение наземного технологического оборудования ракетно-космических комплексов.

H. Ivanytskyi, Yuzhnoye State Design Office

Украина. ГП «КБ «Южное» им. М.К. Янгеля», начальник лаборатории.

Сфера интересов - системы заправки и другие пневмогидравлические системы наземного технологического оборудования ракетно-космических комплексов.

М. Salo, Yuzhnoye State Design Office

Украина. ГП «КБ «Южное» им. М.К. Янгеля», начальник сектора.

Сфера интересов – исследование тепломссообменных процессов в наземном оборудовании ракет-носителей.

O. Brizhak, Yuzhnoye State Design Office

ГП «КБ «Южное» им. М.К. Янгеля», инженер-конструктор 1-й категории.

Сфера интересов - разработка 3D-моделей наземного технологического оборудования ракетно-космических комплексов.


Дегтярь В.Г, Меркулов Е.С., Сафронов А.В., Хлыбов В.И. Результаты расчётно-экспериментальных исследований газодинамических процессов при взаимодействии многоблочных струй ракетных двигателей с газоотражателем стартового сооружения. Космонавтика и ракетостроение. Вып. 1(70), 2013.

Зюзликов В.П., Синильщиков Б. Е, Синильщиков В. Б., Ракитская М. В. Газодинамические процессы в газоходе стартового комплекса малого заглубления для ракет космического назначения лёгкого класса. Исследования наукограда. 22, № 4, 166–174, 2017.

Кудимов Н. Ф., Сафронов А. В., Третьякова О. Н. Численное моделирование взаимодействия многоблочных сверхзвуковых турбулентных струй с преградой // Электронный журнал «Труды МАИ», 2013, № 70: (дата публикации 25.11. 2013)

Сафронов А. В. О применимости моделей турбулентной вязкости для расчета сверхзвуковых струйных течений // Физико-химическая кинетика в газовой динамике 2012, Т.13, выпуск №1:

Синильщиков Б. Е, Синильщиков В. Б. Исследование термосилового нагружения газоотражателей стартовых комплексов при работе систем водоподачи. Исследования наукограда. 20, № 2, 61–71, 2017.

Beale J. C. and Reitz R. D. "Modeling Spray Atomization with the Kelvin-Helmholtz/Rayleigh-Taylor Hybrid Model". Atomization and Sprays. 9. 623–650. 1999.

Dupays J., Wey S. and Fabignom Y. Steady and unsteady reactive two-phase computations in solid rocket motors with Eulerian and Lagrangian approaches. AIAA Paper 2001-3871, 2001.

Gosman A. D. and Ioannides E. "Aspects of computer simulation of liquid-fuelled combustors". J. Energy. 7(6). 482–490. (1983).

Kenzakowski D.C. Turbulence modeling improvements for jet noise prediction using PIV datasets//AIAA−2004−2978, 10th AIAA/CEAS Aeroacoustics Conference and Exhibit, 10−13, (2004).

Krothapalli A., Venkatakrishnan L., Lourenco L., Greska B. and Elavarasan R. Turbulence and noise suppression of a high-speed jet by water injection, Journal of Fluid Mechanics, Vol. 491, 2003, Pp. 131-159.

Kuo K. K. Y. Principles of Combustion. John Wiley and Sons, New York. 1986.

Lamb H. Hydrodynamics, Sixth Edition. Dover Publications, New York. 1945.

Levich V. G. Physicochemical Hydrodynamics. Prentice Hall. 1962.

Liu A. B., Mather D., and Reitz R. D. "Modeling the Effects of Drop Drag and Breakup on Fuel Sprays". SAE Technical Paper 930072. SAE. 1993.

Menter F. R. "Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications". AIAA Journal. 32(8). 1598–1605. August 1994.

Miller R. S., Harstad K. and Bellan J. "Evaluation of Equilibrium and Non-Equilibrium Evaporation Models for Many Droplet Gas-Liquid Flow Simulations". International Journal of Multiphase Flow. 24. 6. 1025 –1055. 1998.

Norum T.D., Reductions in multi-component jet noise by water injection. AIAA-2004-2976, 10ih AIAA ICEAS Aeroacoustics Conference, Manchester, Great Britain, May 2004.

O’Rourke P. J. "Collective Drop Effects on Vaporizing Liquid Sprays". PhD thesis. Princeton University, Princeton, New Jersey. 1981.

Osipov V., Khasin M., Hafiychuk H., Muratov C., Watson M., Smelyanski V. Mitigation of Solid Booster Ignition over Pressure by Water Aerosol Sprays. AIAA Early Edition. Vol. 52, Issue 3, 2015.

Patterson M. A. and Reitz R. D. "Modeling the Effects of Fuel Spray Characteristics on Diesel Engine Combustion and Emission". SAE Paper. SAE. 1998.

Pierre G., Philippe F., Laurent G. Simulation of water injection into a rocket motor plume [M]. 35-th Joint Propulsion Conference and Exhibit. American Institute of Aeronautics and Astronautics. 1999.

Ranz W. E. and Marshall W. R., Jr. "Vaporation from Drops, Part I". Chem. Eng. Prog. 48(3). 141–146. March 1952.

Ranz W. E. and Marshall W. R., Jr. "Evaporation from Drops, Part I and Part II". Chem. Eng. Prog. 48(4). 173–180. April 1952.

Reitz R. D. "Mechanisms of Atomization Processes in High-Pressure Vaporizing Sprays". Atomization and Spray Technology. 3. 309–337. 1987.

Sazhin S. S. "Advanced Models of Fuel Droplet Heating and Evaporation". Progress in Energy and Combustion Science. Elsevier Science. 32. 162–214. 2006.

Taylor G. I. "The Shape and Acceleration of a Drop in a High Speed Air Stream, Technical Report". In the Scientific Papers of G. I. Taylor. ed., G. K. Batchelor. 1963.

Vu, B. T., Bachchany N., Peroomianz O., and Akdagx.V. Multiphase Modeling of Water Injection on Flame Deflector. 21st AIAA Computational Fluid Dynamics Conference, AIAA Paper 2013-2592, June 2013.

Woo J., Jones J. H., and Guest S. H. Study of the Effects of Water Addition on Supersonic Gas Streams. JANNAF 13th Plume Technology Meeting, CPIA Publ., Houston, TX, 1982, pp. 225–232.

Zoppellan E., Juve D., Reduction of jet noise by water injection, AIAA-97-1622, 1997.

Zoppellari E., Juve D., Reduction of hot jet noise by water injection, AIAA-98-2204, 1998.

How to Cite
Mochonov, R., SotnichenkoА., Ivanytskyi, H., SaloМ., & BrizhakО. (2021). REDUCTION OF THE TEMPERATURE AND FORCE IMPACT OF SUPERSONIC JETS OF A ROCKET ENGINE ON OBJECTS OF GROUND TECHNOLOGICAL EQUIPMENT. Journal of Rocket-Space Technology, 29(4), 12-28.