• S. Nikolin Oles Honchar Dnipro National University
  • G. Sokol Oles Honchar Dnipro National University
  • V. Frolov Yuzhnoye State Design Office


The gas-dynamic type of launch from open launch sites is mainly used during the launch vehicles launching. Its accompanied by the occurrence of huge gas-dynamic and acoustic loads that affect both the payload and ground structures in general. The implementation of gas ducts with gas reflectors with a special shape and dimensions is one of the ways to reduce these loads. The purpose of this work is implementation of the numerical method of simulation to demonstrate changing acoustic loads when the geometric parameters of the gas duct change. The simulation of the gas-dynamic launch of the launch vehicle from the launch pad, where the spent jets are discharged with the help of a gas duct, has been conducted (Fig. 1, 2). The calculations were performed for the case when the distance between the nozzle exit and the gas inlet is 9400 mm. The Mach number at the nozzle exit is 3.95, and the temperature is about 1820 K. The nozzle pressure ratio is 0.48. In the current work, the depth of the gas duct (h) applies the values – 5500 mm, 6500 mm, 7500 mm, while the angle of inclination of the deflector (φ) is - 61.9о, 66.6о and 70о, respectively. In this paper, the simulation of gas-dynamic processes is carried out using non-stationary Reynolds-averaged Navier-Stokes equations using the k-ω SST turbulence model. Broadband noise models were used to assess acoustic loads.

Based on the calculation results, the distributions of the Mach number, pressure, temperature, and the acoustic power level inside of the gas duct are constructed. It was found out that with increasing of the gas duct depth the acoustic power of the jet remains unchanged, but the acoustic power level of noise radiation in the environment decreases. Calculations have shown that the shallower the gas duct depth, the higher the acoustic power level. For example, at h = 7500mm the average acoustic power level in the environment is in the range of 90 ÷ 110dB, then at h = 5500mm it is already 110 ÷ 130dB.

Author Biographies

S. Nikolin, Oles Honchar Dnipro National University


Сфера интересов - акустические излучения во время старта ракет.

G. Sokol, Oles Honchar Dnipro National University

Доктор технических наук, профессор.

Сфера интересов -  низкочастотные и инфразвуковые акустические поля.

V. Frolov, Yuzhnoye State Design Office

Заместитель главного конструктора. Кандидат технических наук.

Сфера интересов -  физико-механические процессы старта ракет-носителей, стартовые сооружения и комплексы.


Tsutsumi S., Kato S., Fukuda K., Takaki R. Effect of Deflector Shape on Acoustic Field of Launch Vehicle at Lift-off. 47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition: AIAA 2009-328 (January 5-8, 2009). – Orlando, Florida. С. 1-7.

Panda J., Mosher R.N., Porter B.J. Identification of Noise Sources During Rocket Engine Test Firings and a Rocket Launch Using a Microphone Phased-Array. NASA: TM-2013-216625. 20 с.

Батутина Т. Я., Бондарь Д. С. Обзор результатов экспериментальных исследований по снижению шума при старте ракет-носителей путем впрыска воды. Системне проектування та аналіз характеристик аерокосмічної техніки. 2019. т. 27. С. 3-6.

Acoustic loads generated by the propulsion system / Eldred K. M, et al, Space Vehicle Design Criteria: NASA SP-8072, June 1971.

Бухмастов М.В., Сидельников Р. В. Разработка методики оценки влияния шума реактивной струи на корпус головной части ракеты-носителя. Наука ЮУрГУ: материалы 66-й научной конференции (15-17 апреля 2014 года). Челябинск, Издательский центр ЮУрГУ, 2014. С. 108-112.

Tsutsumi S., Takaki R., Nakanishi Y., Okamoto K., Teramoto S. Acoustic Generation Mechanism of a Supersonic Jet Impinging on Deflectors. 52nd Aerospace Sciences Meeting (AIAA SciTech Forum) (January 13-17, 2014), National Harbor, Maryland, 2014.

Akamine M., Nakanishi Y., Okamoto K., Teramoto S., Okunuki T., Tsutsumi S. Acoustic Phenomena from Correctly Expanded Supersonic Jet Impinging on Inclined Plate. AIAA Journal. 2015. Vol. 53, No. 7. P. 2061-2067.

Akamine M., Okamoto K., Teramoto S., Okunuki T., Tsutsumi S. Conditional Sampling Analysis of Acoustic Phenomena from a Supersonic Jet Impinging on an Inclined Flat Plate. Transactions of the Japan Society for Aeronautical and Space Sciences. 2016. Vol. 59, No. 5. P. 287-294

Worden T.J., Gustavsson J.P.R., Shih Ch., Alvi F.S. Acoustic measurements of High-Temperature Supersonic Impinging Jets in Multiple Configurations. 19th AIAA/CEAS Aeroacoustics Conference (May 27-29, 2013), Berlin, 2013.

Akamine M., Okamoto K., Gee K.L., Neilsen T.B., Teramoto S., Okunuki T., Tsutsumi S. Effect of Nozzle-Plate Distance on Acoustic Phenomena from Supersonic Impinging Jet. AIAA Journal. 2018. Vol. 56, No. 5. P. 1943-1952.

Липницкий Ю. М., Сафронов А. В. Наземная отработка акустики старта ракет-носителей. Ученые записки ЦАГИ. 2014. т. 45, № 2. С. 37 - 49.

Сиренко В. Н., Сокол Г. И., Савчук В. Н., Котлов В. Ю., Савчук Т. Л. Моделирование акустического излучения струи ракеты Циклон 4М объемным источником. Космическая техника. Ракетное вооружение. Space Technology Missile Armaments (Научно-технический сборник). 2019. №1(117). С.65-71.

Gee K.L., Whiting E.B., Neilsen T.B., James M.M. Salton A.R. Development of a Near-Field Intensity Measurement Capability for Static Rocket Firings. Transactions of the Japan Society for Aeronautical and Space Sciences, Aerospace Technology Japan. 2016. Vol. 14, No. 30. P. 9-15

ANSYS Inc., Canonsburg, PA. Product Documentation Release 14.0, 2010.

Dewan Y. A Preliminary Study of Acoustic Prediction Technology Based on Detached Eddy Simulations for Supersonic Jets Impinging on Flat Plates: Master’s thesis. / Daytona Beach, 2013.

Николин С. А., Сокол Г. И. Влияние газодинамических процессов на акустическое излучение при взаимодействии реактивной струи газа с плоской преградой. Космічна наука і технологія. 2020. т. 26. №3. С. 20-31.

How to Cite
Nikolin, S., Sokol, G., & Frolov, V. (2021). ON THE INFLUENCE OF THE GAS DUCT SHAPE ON THE ACOUSTIC LOADS VALUE AT THE LIFT-OFF OF THE LAUNCH VEHICLE WITH A SINGLE NOZZLE. Journal of Rocket-Space Technology, 28(4), 129-142. https://doi.org/10.15421/452018
Applied mechanics and mathematical methods