ANGULAR MOVEMENT PROGRAM CALCULATION PROCEDURE SPACECRAFT WHEN TAKING THE SURFACE OF THE EARTH IN AREA MODE

  • Oleg Viktorovich Lutz Yuzhnoe State Design Office
  • Galina Alexandrovna Borshchova Yuzhnoe State Design Office
  • Evgeny Dmitrievich Yarmolchuk Yuzhnoe State Design Office
  • Alexander Alekseevich Manoilenko Oles Honchar Dnipro National University
Keywords: SPACECRAFT, AREAL SHOOTING, ANGULAR MOTION

Abstract

Currently increased interest in satellite images of the Earth's surface with high resolution terrain  (1 to 10 m). To obtain such images, you must use a long focus optical system (OS) having a limited field of view that does not allow the images of the large width. To increase the effectiveness of shooting in modern space systems (SS) Earth observation provides the opportunity after shooting a segment of the Earth's surface to redirect the OS to another area and spend it shooting. With sufficient speed shift OS it is possible to survey two or more adjacent parcels, which is almost equivalent to the corresponding increase in the width of the field of view of the removing apparatus. In this connection there is the task of restoring the OS, which is solved by the use of appropriate hardware and software control the angular movement of the removing apparatus. When creating the SS there is also the need to solve the following tasks: calculation of the program angular motion in a given length of the removable sections and a predetermined number of adjacent strips to be shot, with the purpose of definition of system requirements, spacecraft (SC) control and calculation under given characteristics of the system orientation of the SC possible number of the maximum length and remove adjacent portions of the surface of the Earth. To solve these tasks the mathematical model software of angular motion of the SC. Given the necessary initial data, mathematical model and method of calculation of kinematic parameters of a software angular motion of a SC in the mode of area highway shooting adjacent sections of the Earth's surface located at a predetermined distance from a trace route SC; examples and results of numerical calculations of the programmes angular motion by moving the instrument in remote sensing.

References

Бакланов А.И. Анализ состояния и тенденции развития систем наблюдения высокого и сверхвысокого разрешения. Вестник Самарского государственного аэрокосмического университета. 2010. №2. С. 80 – 91.

Бакланов А.И. Системы наблюдения и мониторинга: учебное пособие. М.: «БИНОМ» Лаборатория знаний. 2009. 234 с.

Батраков А.С. Общая модель для расчета и анализа скорости сдвига оптического изображения при съемке земной поверхности. Исследование Земли из космоса. № 4. 1989. С. 99 – 106.

Батраков А.С. Математическая модель для прогнозирования линейного разрешения космических оптико-электронных систем дистанционного зондирования. Оптический журнал. 2000. Т. 67. № 7. С. 92 − 97.

Бутырин С.А. Кинематический синтез программного углового движения космического аппарата при оптико-электронной съёмке Земли. Известия Самарского научного центра РАН. 2007. Т. 9. № 3.

Петрищев В.Ф. Оптимальное сканирование космическим аппаратом поверхности Земли: учебное пособие. Самара: Изд-во СГАУ. 2007. 96 с.

Jacobsen K. Characteristics of very high resolution optical satellites for topographic mapping. Leibniz University Hannover, Germany, Institute of Photogrammetry and Geoinformation, Commission I, WG I/4. ISPRS Hannover Workshop 2011. In: The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XXXVIII - 4 / W19, pp. 137 –142.

Brian Howley. AA236: Overview of a spacecraft attitude determination and control. Lockheed Martin Space System Company. – URL: http://edge.rit.edu/edge/P07106/public/ Docs/Research/LM Attitude Determination Control.pdf.

G. Di Mauro, M. Lawn, R. Bevilacqua. Survey on Guidance Navigation and Control Requirementsfor Spacecraft Formation-Flying Missions. JOURNAL OF GUIDANCE, CONTROL AND DYNAMICS. Vol. 41, №3, March 2018. doi:10.2514/1.G002868. pp. 581-603.

Published
2019-12-30
How to Cite
Lutz, O. V., Borshchova, G. A., Yarmolchuk, E. D., & Manoilenko, A. A. (2019). ANGULAR MOVEMENT PROGRAM CALCULATION PROCEDURE SPACECRAFT WHEN TAKING THE SURFACE OF THE EARTH IN AREA MODE. Journal of Rocket-Space Technology, 27(4), 86-100. https://doi.org/10.15421/451914